\(\int \frac {(a g+b g x)^2 (A+B \log (e (\frac {a+b x}{c+d x})^n))}{(c i+d i x)^3} \, dx\) [152]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 43, antiderivative size = 263 \[ \int \frac {(a g+b g x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{(c i+d i x)^3} \, dx=\frac {B g^2 n (a+b x)^2}{4 d i^3 (c+d x)^2}-\frac {A b g^2 (a+b x)}{d^2 i^3 (c+d x)}+\frac {b B g^2 n (a+b x)}{d^2 i^3 (c+d x)}-\frac {b B g^2 (a+b x) \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{d^2 i^3 (c+d x)}-\frac {g^2 (a+b x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{2 d i^3 (c+d x)^2}-\frac {b^2 g^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right ) \log \left (\frac {b c-a d}{b (c+d x)}\right )}{d^3 i^3}-\frac {b^2 B g^2 n \operatorname {PolyLog}\left (2,\frac {d (a+b x)}{b (c+d x)}\right )}{d^3 i^3} \]

[Out]

1/4*B*g^2*n*(b*x+a)^2/d/i^3/(d*x+c)^2-A*b*g^2*(b*x+a)/d^2/i^3/(d*x+c)+b*B*g^2*n*(b*x+a)/d^2/i^3/(d*x+c)-b*B*g^
2*(b*x+a)*ln(e*((b*x+a)/(d*x+c))^n)/d^2/i^3/(d*x+c)-1/2*g^2*(b*x+a)^2*(A+B*ln(e*((b*x+a)/(d*x+c))^n))/d/i^3/(d
*x+c)^2-b^2*g^2*(A+B*ln(e*((b*x+a)/(d*x+c))^n))*ln((-a*d+b*c)/b/(d*x+c))/d^3/i^3-b^2*B*g^2*n*polylog(2,d*(b*x+
a)/b/(d*x+c))/d^3/i^3

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 263, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {2561, 45, 2393, 2332, 2341, 2354, 2438} \[ \int \frac {(a g+b g x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{(c i+d i x)^3} \, dx=-\frac {b^2 g^2 \log \left (\frac {b c-a d}{b (c+d x)}\right ) \left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right )}{d^3 i^3}-\frac {g^2 (a+b x)^2 \left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right )}{2 d i^3 (c+d x)^2}-\frac {A b g^2 (a+b x)}{d^2 i^3 (c+d x)}-\frac {b^2 B g^2 n \operatorname {PolyLog}\left (2,\frac {d (a+b x)}{b (c+d x)}\right )}{d^3 i^3}-\frac {b B g^2 (a+b x) \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{d^2 i^3 (c+d x)}+\frac {b B g^2 n (a+b x)}{d^2 i^3 (c+d x)}+\frac {B g^2 n (a+b x)^2}{4 d i^3 (c+d x)^2} \]

[In]

Int[((a*g + b*g*x)^2*(A + B*Log[e*((a + b*x)/(c + d*x))^n]))/(c*i + d*i*x)^3,x]

[Out]

(B*g^2*n*(a + b*x)^2)/(4*d*i^3*(c + d*x)^2) - (A*b*g^2*(a + b*x))/(d^2*i^3*(c + d*x)) + (b*B*g^2*n*(a + b*x))/
(d^2*i^3*(c + d*x)) - (b*B*g^2*(a + b*x)*Log[e*((a + b*x)/(c + d*x))^n])/(d^2*i^3*(c + d*x)) - (g^2*(a + b*x)^
2*(A + B*Log[e*((a + b*x)/(c + d*x))^n]))/(2*d*i^3*(c + d*x)^2) - (b^2*g^2*(A + B*Log[e*((a + b*x)/(c + d*x))^
n])*Log[(b*c - a*d)/(b*(c + d*x))])/(d^3*i^3) - (b^2*B*g^2*n*PolyLog[2, (d*(a + b*x))/(b*(c + d*x))])/(d^3*i^3
)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2332

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2341

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log[c*x^
n])/(d*(m + 1))), x] - Simp[b*n*((d*x)^(m + 1)/(d*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2354

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[Log[1 + e*(x/d)]*((a +
b*Log[c*x^n])^p/e), x] - Dist[b*n*(p/e), Int[Log[1 + e*(x/d)]*((a + b*Log[c*x^n])^(p - 1)/x), x], x] /; FreeQ[
{a, b, c, d, e, n}, x] && IGtQ[p, 0]

Rule 2393

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = ExpandIntegrand[a + b*Log[c*x^n], (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c,
d, e, f, m, n, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IntegerQ[m] && IntegerQ[r]))

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2561

Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_))^(m
_.)*((h_.) + (i_.)*(x_))^(q_.), x_Symbol] :> Dist[(b*c - a*d)^(m + q + 1)*(g/b)^m*(i/d)^q, Subst[Int[x^m*((A +
 B*Log[e*x^n])^p/(b - d*x)^(m + q + 2)), x], x, (a + b*x)/(c + d*x)], x] /; FreeQ[{a, b, c, d, e, f, g, h, i,
A, B, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] && EqQ[d*h - c*i, 0] && IntegersQ[m, q]

Rubi steps \begin{align*} \text {integral}& = \frac {g^2 \text {Subst}\left (\int \frac {x^2 \left (A+B \log \left (e x^n\right )\right )}{b-d x} \, dx,x,\frac {a+b x}{c+d x}\right )}{i^3} \\ & = \frac {g^2 \text {Subst}\left (\int \left (-\frac {b \left (A+B \log \left (e x^n\right )\right )}{d^2}-\frac {x \left (A+B \log \left (e x^n\right )\right )}{d}-\frac {b^2 \left (A+B \log \left (e x^n\right )\right )}{d^2 (-b+d x)}\right ) \, dx,x,\frac {a+b x}{c+d x}\right )}{i^3} \\ & = -\frac {\left (b g^2\right ) \text {Subst}\left (\int \left (A+B \log \left (e x^n\right )\right ) \, dx,x,\frac {a+b x}{c+d x}\right )}{d^2 i^3}-\frac {\left (b^2 g^2\right ) \text {Subst}\left (\int \frac {A+B \log \left (e x^n\right )}{-b+d x} \, dx,x,\frac {a+b x}{c+d x}\right )}{d^2 i^3}-\frac {g^2 \text {Subst}\left (\int x \left (A+B \log \left (e x^n\right )\right ) \, dx,x,\frac {a+b x}{c+d x}\right )}{d i^3} \\ & = \frac {B g^2 n (a+b x)^2}{4 d i^3 (c+d x)^2}-\frac {A b g^2 (a+b x)}{d^2 i^3 (c+d x)}-\frac {g^2 (a+b x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{2 d i^3 (c+d x)^2}-\frac {b^2 g^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right ) \log \left (\frac {b c-a d}{b (c+d x)}\right )}{d^3 i^3}-\frac {\left (b B g^2\right ) \text {Subst}\left (\int \log \left (e x^n\right ) \, dx,x,\frac {a+b x}{c+d x}\right )}{d^2 i^3}+\frac {\left (b^2 B g^2 n\right ) \text {Subst}\left (\int \frac {\log \left (1-\frac {d x}{b}\right )}{x} \, dx,x,\frac {a+b x}{c+d x}\right )}{d^3 i^3} \\ & = \frac {B g^2 n (a+b x)^2}{4 d i^3 (c+d x)^2}-\frac {A b g^2 (a+b x)}{d^2 i^3 (c+d x)}+\frac {b B g^2 n (a+b x)}{d^2 i^3 (c+d x)}-\frac {b B g^2 (a+b x) \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{d^2 i^3 (c+d x)}-\frac {g^2 (a+b x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{2 d i^3 (c+d x)^2}-\frac {b^2 g^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right ) \log \left (\frac {b c-a d}{b (c+d x)}\right )}{d^3 i^3}-\frac {b^2 B g^2 n \text {Li}_2\left (\frac {d (a+b x)}{b (c+d x)}\right )}{d^3 i^3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 259, normalized size of antiderivative = 0.98 \[ \int \frac {(a g+b g x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{(c i+d i x)^3} \, dx=\frac {g^2 \left (\frac {B (b c-a d)^2 n}{(c+d x)^2}-\frac {6 b B (b c-a d) n}{c+d x}-6 b^2 B n \log (a+b x)-\frac {2 (b c-a d)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{(c+d x)^2}+\frac {8 b (b c-a d) \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{c+d x}+6 b^2 B n \log (c+d x)+4 b^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right ) \log (c+d x)-2 b^2 B n \left (\left (2 \log \left (\frac {d (a+b x)}{-b c+a d}\right )-\log (c+d x)\right ) \log (c+d x)+2 \operatorname {PolyLog}\left (2,\frac {b (c+d x)}{b c-a d}\right )\right )\right )}{4 d^3 i^3} \]

[In]

Integrate[((a*g + b*g*x)^2*(A + B*Log[e*((a + b*x)/(c + d*x))^n]))/(c*i + d*i*x)^3,x]

[Out]

(g^2*((B*(b*c - a*d)^2*n)/(c + d*x)^2 - (6*b*B*(b*c - a*d)*n)/(c + d*x) - 6*b^2*B*n*Log[a + b*x] - (2*(b*c - a
*d)^2*(A + B*Log[e*((a + b*x)/(c + d*x))^n]))/(c + d*x)^2 + (8*b*(b*c - a*d)*(A + B*Log[e*((a + b*x)/(c + d*x)
)^n]))/(c + d*x) + 6*b^2*B*n*Log[c + d*x] + 4*b^2*(A + B*Log[e*((a + b*x)/(c + d*x))^n])*Log[c + d*x] - 2*b^2*
B*n*((2*Log[(d*(a + b*x))/(-(b*c) + a*d)] - Log[c + d*x])*Log[c + d*x] + 2*PolyLog[2, (b*(c + d*x))/(b*c - a*d
)])))/(4*d^3*i^3)

Maple [F]

\[\int \frac {\left (b g x +a g \right )^{2} \left (A +B \ln \left (e \left (\frac {b x +a}{d x +c}\right )^{n}\right )\right )}{\left (d i x +c i \right )^{3}}d x\]

[In]

int((b*g*x+a*g)^2*(A+B*ln(e*((b*x+a)/(d*x+c))^n))/(d*i*x+c*i)^3,x)

[Out]

int((b*g*x+a*g)^2*(A+B*ln(e*((b*x+a)/(d*x+c))^n))/(d*i*x+c*i)^3,x)

Fricas [F]

\[ \int \frac {(a g+b g x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{(c i+d i x)^3} \, dx=\int { \frac {{\left (b g x + a g\right )}^{2} {\left (B \log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right ) + A\right )}}{{\left (d i x + c i\right )}^{3}} \,d x } \]

[In]

integrate((b*g*x+a*g)^2*(A+B*log(e*((b*x+a)/(d*x+c))^n))/(d*i*x+c*i)^3,x, algorithm="fricas")

[Out]

integral((A*b^2*g^2*x^2 + 2*A*a*b*g^2*x + A*a^2*g^2 + (B*b^2*g^2*x^2 + 2*B*a*b*g^2*x + B*a^2*g^2)*log(e*((b*x
+ a)/(d*x + c))^n))/(d^3*i^3*x^3 + 3*c*d^2*i^3*x^2 + 3*c^2*d*i^3*x + c^3*i^3), x)

Sympy [F]

\[ \int \frac {(a g+b g x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{(c i+d i x)^3} \, dx=\frac {g^{2} \left (\int \frac {A a^{2}}{c^{3} + 3 c^{2} d x + 3 c d^{2} x^{2} + d^{3} x^{3}}\, dx + \int \frac {A b^{2} x^{2}}{c^{3} + 3 c^{2} d x + 3 c d^{2} x^{2} + d^{3} x^{3}}\, dx + \int \frac {B a^{2} \log {\left (e \left (\frac {a}{c + d x} + \frac {b x}{c + d x}\right )^{n} \right )}}{c^{3} + 3 c^{2} d x + 3 c d^{2} x^{2} + d^{3} x^{3}}\, dx + \int \frac {2 A a b x}{c^{3} + 3 c^{2} d x + 3 c d^{2} x^{2} + d^{3} x^{3}}\, dx + \int \frac {B b^{2} x^{2} \log {\left (e \left (\frac {a}{c + d x} + \frac {b x}{c + d x}\right )^{n} \right )}}{c^{3} + 3 c^{2} d x + 3 c d^{2} x^{2} + d^{3} x^{3}}\, dx + \int \frac {2 B a b x \log {\left (e \left (\frac {a}{c + d x} + \frac {b x}{c + d x}\right )^{n} \right )}}{c^{3} + 3 c^{2} d x + 3 c d^{2} x^{2} + d^{3} x^{3}}\, dx\right )}{i^{3}} \]

[In]

integrate((b*g*x+a*g)**2*(A+B*ln(e*((b*x+a)/(d*x+c))**n))/(d*i*x+c*i)**3,x)

[Out]

g**2*(Integral(A*a**2/(c**3 + 3*c**2*d*x + 3*c*d**2*x**2 + d**3*x**3), x) + Integral(A*b**2*x**2/(c**3 + 3*c**
2*d*x + 3*c*d**2*x**2 + d**3*x**3), x) + Integral(B*a**2*log(e*(a/(c + d*x) + b*x/(c + d*x))**n)/(c**3 + 3*c**
2*d*x + 3*c*d**2*x**2 + d**3*x**3), x) + Integral(2*A*a*b*x/(c**3 + 3*c**2*d*x + 3*c*d**2*x**2 + d**3*x**3), x
) + Integral(B*b**2*x**2*log(e*(a/(c + d*x) + b*x/(c + d*x))**n)/(c**3 + 3*c**2*d*x + 3*c*d**2*x**2 + d**3*x**
3), x) + Integral(2*B*a*b*x*log(e*(a/(c + d*x) + b*x/(c + d*x))**n)/(c**3 + 3*c**2*d*x + 3*c*d**2*x**2 + d**3*
x**3), x))/i**3

Maxima [F]

\[ \int \frac {(a g+b g x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{(c i+d i x)^3} \, dx=\int { \frac {{\left (b g x + a g\right )}^{2} {\left (B \log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right ) + A\right )}}{{\left (d i x + c i\right )}^{3}} \,d x } \]

[In]

integrate((b*g*x+a*g)^2*(A+B*log(e*((b*x+a)/(d*x+c))^n))/(d*i*x+c*i)^3,x, algorithm="maxima")

[Out]

1/2*B*a*b*g^2*n*((b*c^2 - 3*a*c*d + 2*(b*c*d - 2*a*d^2)*x)/((b*c*d^4 - a*d^5)*i^3*x^2 + 2*(b*c^2*d^3 - a*c*d^4
)*i^3*x + (b*c^3*d^2 - a*c^2*d^3)*i^3) + 2*(b^2*c - 2*a*b*d)*log(b*x + a)/((b^2*c^2*d^2 - 2*a*b*c*d^3 + a^2*d^
4)*i^3) - 2*(b^2*c - 2*a*b*d)*log(d*x + c)/((b^2*c^2*d^2 - 2*a*b*c*d^3 + a^2*d^4)*i^3)) + 1/4*B*a^2*g^2*n*((2*
b*d*x + 3*b*c - a*d)/((b*c*d^3 - a*d^4)*i^3*x^2 + 2*(b*c^2*d^2 - a*c*d^3)*i^3*x + (b*c^3*d - a*c^2*d^2)*i^3) +
 2*b^2*log(b*x + a)/((b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)*i^3) - 2*b^2*log(d*x + c)/((b^2*c^2*d - 2*a*b*c*d^2 +
 a^2*d^3)*i^3)) + 1/2*A*b^2*g^2*((4*c*d*x + 3*c^2)/(d^5*i^3*x^2 + 2*c*d^4*i^3*x + c^2*d^3*i^3) + 2*log(d*x + c
)/(d^3*i^3)) - 1/2*B*b^2*g^2*((2*(d^2*n*x^2 + 2*c*d*n*x + c^2*n)*log(b*x + a)*log(d*x + c) - (d^2*n*x^2 + 2*c*
d*n*x + c^2*n)*log(d*x + c)^2 - (4*c*d*x + 3*c^2 + 2*(d^2*x^2 + 2*c*d*x + c^2)*log(d*x + c))*log((b*x + a)^n)
+ (4*c*d*x + 3*c^2 + 2*(d^2*x^2 + 2*c*d*x + c^2)*log(d*x + c))*log((d*x + c)^n))/(d^5*i^3*x^2 + 2*c*d^4*i^3*x
+ c^2*d^3*i^3) - 2*integrate(1/2*(2*b*d^3*x^3*log(e) + 2*a*d^3*x^2*log(e) - 3*b*c^3*n + 3*a*c^2*d*n - 4*(b*c^2
*d*n - a*c*d^2*n)*x + 2*(b*d^3*n*x^3 + a*c^2*d*n + (2*b*c*d^2*n + a*d^3*n)*x^2 + (b*c^2*d*n + 2*a*c*d^2*n)*x)*
log(b*x + a))/(b*d^6*i^3*x^4 + a*c^3*d^3*i^3 + (3*b*c*d^5*i^3 + a*d^6*i^3)*x^3 + 3*(b*c^2*d^4*i^3 + a*c*d^5*i^
3)*x^2 + (b*c^3*d^3*i^3 + 3*a*c^2*d^4*i^3)*x), x)) - (2*d*x + c)*B*a*b*g^2*log(e*(b*x/(d*x + c) + a/(d*x + c))
^n)/(d^4*i^3*x^2 + 2*c*d^3*i^3*x + c^2*d^2*i^3) - (2*d*x + c)*A*a*b*g^2/(d^4*i^3*x^2 + 2*c*d^3*i^3*x + c^2*d^2
*i^3) - 1/2*B*a^2*g^2*log(e*(b*x/(d*x + c) + a/(d*x + c))^n)/(d^3*i^3*x^2 + 2*c*d^2*i^3*x + c^2*d*i^3) - 1/2*A
*a^2*g^2/(d^3*i^3*x^2 + 2*c*d^2*i^3*x + c^2*d*i^3)

Giac [F]

\[ \int \frac {(a g+b g x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{(c i+d i x)^3} \, dx=\int { \frac {{\left (b g x + a g\right )}^{2} {\left (B \log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right ) + A\right )}}{{\left (d i x + c i\right )}^{3}} \,d x } \]

[In]

integrate((b*g*x+a*g)^2*(A+B*log(e*((b*x+a)/(d*x+c))^n))/(d*i*x+c*i)^3,x, algorithm="giac")

[Out]

integrate((b*g*x + a*g)^2*(B*log(e*((b*x + a)/(d*x + c))^n) + A)/(d*i*x + c*i)^3, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a g+b g x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{(c i+d i x)^3} \, dx=\int \frac {{\left (a\,g+b\,g\,x\right )}^2\,\left (A+B\,\ln \left (e\,{\left (\frac {a+b\,x}{c+d\,x}\right )}^n\right )\right )}{{\left (c\,i+d\,i\,x\right )}^3} \,d x \]

[In]

int(((a*g + b*g*x)^2*(A + B*log(e*((a + b*x)/(c + d*x))^n)))/(c*i + d*i*x)^3,x)

[Out]

int(((a*g + b*g*x)^2*(A + B*log(e*((a + b*x)/(c + d*x))^n)))/(c*i + d*i*x)^3, x)